Nuclear magnetic resonance and mass spectra of organomercury hydrides and deuterides, Part II

Peter J Craig, Herve Garraud¹, Stuart H Laurie, Darren Mennie² and Grace H Stojak Department of Chemistry, De Montfort University, PO Box 143, Leicester LE1 9BH (UK) (Received July 1, 1993)

Abstract

Further mass spectroscopic and NMR evidence is given for the existence of several organomercury hydrides and deuterides.

Key words: Mass spectrometry; Nuclear magnetic resonance; Mercury; Hydride; Deuteride

1. Introduction

We recently prepared the compound CH₃HgH, and characterized it by mass spectrometry and NMR spectroscopy [1,2]. At the same time this compound was also reported by Filipelli et al. [3]. We identified the composition of the compound primarily by MS studies involving the CH3²⁰⁴HgH, CH3²⁰⁴HgD, ²⁰⁴HgH and ²⁰⁴HgD MS peaks at 220, 221, 205 and 206 respectively. These identifications made use of the heaviest naturally occurring mercury isotope (²⁰⁴Hg) and its bond with H or D. We also confirmed the presence of CH₂ and H attached to mercury by ¹H NMR spectroscopy by noting that the same coupling constant was observed for the CH_3 resonance (d, J = 4.2 Hz) and the H resonance (q, J = 4.4 Hz). Spin decoupling was used to confirm the assignments [2]. A characteristic of the ¹H NMR spectrum of CH₃HgH was the unusually high δ value for the hydride resonance (17.2 ppm). In view of this, and of the unusual nature of the CH₃HgH complex, we have studied further examples of complexes of this type.

2. Results and discussion

2.1. NMR spectroscopy

NMR details are presented in Table 1. It can be seen that all the hydrides show resonances assigned to the Hg-H moiety, at 11 ppm or higher, confirming that the appearance of the CH_3HgH resonance in this region is not unique. None of the deuterium compounds has a peak in this region, again supporting the Hg-H assignment. Aliphatic and aromatic protons are found in the expected regions, with appropriate coupling constants. The coupling constants $J(^{199}Hg CH_2$ -) and $J(^{199}Hg-CH_3)$ were in the region ca. 80-100 Hz in the alkyl compounds, such values being typical for this coupling. For the ethylmercury compounds $J(^{199}Hg-CH_2CH_3)$ was in the region 120-130 Hz, again typical for ethylmercury compounds, and confirming the bonding of the alkyl group to mercury. The ¹⁹⁹Hg alkyl proton coupling constant in C₂H₅HgCl is about 200-300 Hz, and so it seems that no halogen is bound to mercury in the present case [4].

The fine structures of the RHgH resonances are complex. Only CH₃HgH, where a single carbon is present in the alkyl group, shows the expected coupling to H (viz. quartet). For all the other alkyl mercury hydrides the coupling is complex, implying interaction with protons or fluorine nuclei on carbon atoms β or further from the HgH moiety. The observed HgH peaks are therefore attributable to overlap of H/FC α

Correspondence to: Prof. P.J. Craig.

¹ Ecole National Supérieure de Chimie et de Physique de Bordeaux, France.

² Present address: Torrey Research Station, Ministry of Agriculture, Fisheries and Food, Aberdeen, Scotland, UK.

	∂R <i>CH</i> 2Hg	∂CH ₃ CH ₂ Hg	$\partial C_6 H_5$ Hg	∂Hg <i>H</i>
CH ₃ HgH	0.10 (d, J^{199} (Hg-CH ₃) = 103) J(Hg <i>H</i> -CH ₃) = 4.19	NA	NA	17.2 q $J = 4.43$ (CH ₃ coupling to Hg proton)
C₂H₅HgH	0.85 (q, $J = 8.3$) J^{199} Hg coupling shows as 2 satellite quartets (internal $J = 8.1$) $J(^{199}$ Hg-CH ₂) = 95 J = 8.2 in CH CH coupling	1.26 (t, $J = 8.0$) J^{199} Hg shows as 2 satellite triplets (internal $J = 8.1$) $J(^{199}$ Hg-H) = 122.5 J = 8.0 is CH CH coupling	NA	17.14 (sextet, J = 4.9 apparent)
	$J = 8.3$ is $CH_3 CH_2$ coupling	$J = 8.0$ is CH_3CH_2 coupling		
C ₆ H ₅ HgH	NA	NA	7.18 (m)	14.1 (sextet, J = 1.1 apparent). Peak vanished after 36 h
C ₆ F ₅ HgH	NA	NA	NA	11.94 (pentet, $J = 6.5$)
CH ₃ HgD	0.09 (t, $J(^{199}$ Hg-CH ₃) = 103) J(HgD) vs. CH ₃ = 6.7	NA	NA	No peak observed
C ₂ H ₅ HgD	0.86 (q, $J = 8.0$) J^{199} Hg coupling shows as 2 satellite quartets (internal $J = 8.0$) $J(^{199}$ Hg-CH ₂) = 100 J = 8.0 is CH ₃ CH ₂ coupling.	1.26 (t, $J = 8.0$) J^{199} Hg shows as 2 satellite triplets (internal $J = 8$) $J(^{199}$ Hg-H) = 130 J = 8 is CH ₃ CH ₂ coupling	NA	No peak observed
C ₆ H₅HgD	NA	NA	7.20 (multiplet)	No peak observed
C ₆ F ₅ HgD	NA	NA	NA	No peak observed

TABLE 1(a). NMR spectra data for of organomercury hydrides and deuterides ^a

and H/F-C β couplings to the proton bound to mercury. The HgH resonance for PhHgH vanished after 36 h. Further study is being undertaken on the fine structures of the signals from protons bound to mercury.

The relative positions of the methyl and methylene protons in the ethylmercury species are informative. Where the ethyl group is close to electron withdrawing species the methylene group is downfield of the methyl $(e.g. \text{ in } CH_3Si(OC_2H_5)_3 \text{ or } C_2H_5HgCl)$. Where the ethyl group is in the vicinity of electron donor or neutral ligands, the positions of methylene and methyl are reversed $(e.g. \text{ in } Si(C_2H_5)_4 \text{ or } Hg(C_2H_5)_2 \text{ for}$

TABLE 1(b) a

	∂R <i>CH</i> ₂ Hg	∂CH ₃ CH ₂ Hg	∂C ₆ H ₅ Hg
CH ₃ HgCl ^b	0.425 $J(^{199}Hg-CH_3) = 215.2$	NA	NA
C ₂ H ₅ HgCl	0.76 (q, $J = 8.0$) J^{199} Hg coupling shows as 2 satellite quartets (internal $J = 8.0$) $J(^{199}$ Hg-H) = 187.5	0.54 (t, <i>J</i> = 7.8)	NA

^a Coupling constants are in Hz. ^b From ref. 4. d = doublet; t = triplet, q = quartet.

example, the methyl peak is downfield of the methylene) [5,6]. In the case of C_2H_5HgH and C_2H_5HgD this latter is observed to be the case, in accordance with the relative electronegativities of H or D compared with *e.g.* Cl (2.1 *vs.* 3.0). These observations argue in favour of the assignment of the complexes as C_2H_5HgH and C_2H_5HgD respectively.

2.2. Mass spectrometry

Isotopic abundance and mass spectrometric details are given in Tables 2 and 3. For definitive identification of the presence of the HgH and HgD moieties we mainly make use of the highest naturally occurring mercury isotope (²⁰⁴Hg, Table 2). For each proposed

TABLE 2. Mercury isotopes

Mass	Abundance (%)	
196	0.15	
198	10.10	
199	17.00	
200	23.10	
201	13.20	
202	29.65	
204	6.80	

TABLE 3. Mass spectra of organomercury hydrides and deuterides

CH ₃ HgH: expected RMM range 212–220						
s						
id 198.						
13.						
gH ⁺						
3.						
-,						
ts						
<u> </u>						
· · · · · · · · ·						
IS						
und 204,						
ınd 204,						
and 204, s present						
and 204, s present						
and 204, s present						
and 204, s present ts						
nd 204, s present ts						
nd 204, s present ts						
nd 204, s present ts						
ts						
ts						
ts						
ts						
ts						
ts						
ts						
ts						
ts						
ts						
ts						
ts						
ts						
ts						
ts and 204, ts and 204, H ⁺ units						
ts and 204, s present ts						
ts and 204, s present ts						

TABLE 3 (continued)

C ₆ H ₆ HgD: expected RMM range 275–283					
RHgD ⁺ /RHg ⁺	HgD^+/Hg^+	Assignments/comments			
275	197	283 is C ₆ H ₅ ²⁰⁴ HgD ⁺			
276	198	281 is $C_6H_5^{202}HgD^+$			
277	199	No ¹⁹⁶ Hg ⁺ is detected			
278	200	206 is ²⁰⁴ HgD ⁺			
279	201				
280	202				
281	203				
282	204				
283	206				
C ₆ F ₅ HgH: expecte	d RMM range 364	4-372			
RHgH ⁺ /RHg ⁺	HgH ⁺ /Hg ⁺	Assignments/comments			
366	196	370 is $C_6 F_5^{202} HgH^+$			
367	199	372 is $C_6 F_5^{204} HgH^+$			
368	202	203 is ²⁰² HgH ⁺			
369	203	No ²⁰⁴ HgH ⁺ is detected			
370	204				
371	207				
372	208				
C ₆ F ₅ HgD: expecte	d RMM range 36	5-373			
RHgD ⁺ /RHg ⁺	HgD ⁺ /Hg ⁺	Assignments/comments			
367	196	$371 \text{ is } C_6 F_5^{202} \text{HgD}^+$			
368	198	373 is $C_6 F_5^{204} HgD^+$			
369	199	No ²⁰⁴ HgD ⁺ is detected			
370	200				
371	201				
373	202				
	203				
	204				
	208				

compound it can be seen from Table 3 that the expected m/e peak for RHgH⁺, RHgD⁺, HgH⁺ and HgD⁺ is observed as $R^{204}Hg^+$ +1 (or 2 respectively). Compounds of similar structure, but without the presence of H or D ligands (e.g. C_2H_5HgCl) do not show MS peaks at these m/e values. It should be noted that a given MS peaks can come from an ion containing more than one mercury isotope; this can be exemplified by considering the phenyl compound. The group of MS peaks containing $C_6H_5HgH^+$ also contains $C_6H_5Hg^+$ fragments. The existence of these mixed isotope species, incrementally heavier by one or two mass units, demonstrates that RHg⁺ and RHgH⁺ (or $RHgD^+$) are present (illustrated in Fig. 1) *i.e.* the existence of these mixed species demonstrates that mercury hydrogen or deuterium linkages are present. Proof for the presence of HgH⁺ moieties is also alluded to in Table 3, viz. the absence of gaps in the MS peaks attributable to the intervals that would occur if the peaks were caused only by RHg^+ or Hg^+ ; e.g. for CH_3HgH^+ and $C_2H_5HgH^+$ we see MS peaks at 197 and 203, demonstrating the presence of HgH⁺ (since 197 Hg⁺ and 203 Hg⁺ do not exist).

Fig. 1. Mass spectra of selected organomercury hydrides and deuterides. $A = C_2H_5HgH$ (HgH⁺ region); $B = C_2H_5HgD$ (HgD⁺ region); $C = C_2H_5HgH$ (RHgH⁺ region); $D = C_2H_5HgD$ (RHgD⁺ region); $E = C_6H_5HgH$ (RHgH⁺ region); $F = C_6H_5HgD$ (RHgD⁺ region); $G = C_6F_5HgH$ (RHgH⁺ region); $H = C_6F_5HgD$ (RHgD⁺ region).

3. Experimental details

The preparation and sampling of CH₃HgH and CH₃HgD has been described previously [2]. C₂H₅HgH, C₂H₅HgD, C₆H₅HgH, C₆H₅HgD, C₆F₅HgH and C₆F₅HgD were prepared from aqueous solutions of the appropriate organomercury chloride at pH4 (citrate buffer) by use of NaBH₄ or NaBD₄. The amounts of the precursor organomercury chlorides depended on their solubility (viz. 100 cm³ of 200 ppm C_2H_5HgCl ; 200 cm³ of 100 ppm C_6H_5HgCl ; 20 cm³ of 1000 ppm C_6F_5HgCl). The solutions were placed in a volumetric flask of such a size that the solution extended into the neck of the flask. To the solutions in each case were added 2 cm³ of 4% NaBH₄ or NaBD₄. On top of the aqueous solution was added 5 cm³ of benzene- d_6 (for NMR work) or hexane (analytical grade, for GC MS work). After treatment with $NaBH_4$ or $NaBD_4$ the vessel was stoppered and the solution left for 15 min without agitation. A Pasteur pipette was used to withdraw $ca. 3.5 \text{ cm}^3$ of the organic layer, and this was dried over anhydrous MgSO₄ prior to analysis. The dried solutions were used for the GC-MS and NMR experiments.

NMR studies were carried out on the solution using a Bruker 250Hz instrument. GC-MS investigations were carried out with a VG Mass Lab Trio triple quadrupole instrument with a 30 M SE54 capillary column and a HP5890 GC. GC-MS analysis of the solution or of the vapour in the headspace above the solution (contained after drying in a sealed crimp top vial) showed the presence of C_2H_5HgH or C_2H_5HgD . The gas chromatograph was fitted with a 12 m SE54 capillary column (Altech) interfaced to the VG Mass Lab Trio 3 mass spectrometer. In the case of aromatic species, the analysis was carried out on the solution, not the vapour in the headspace.

Acknowledgments

We acknowledge the support of SERC, UK (D.M., studentship) and the PCFC, UK (G.S., studentship). The support of the British Council through the UK-German Academic Research Scheme and the UK-France Alliance programme is gratefully acknowledged. H.G. was supported by the COMETT programme of the EC. C_6F_5HgCl was a gift from Professor G.B. Deacon, Department of Chemistry, Monash University, Clayton, Vic., Australia.

References

- 1 P.J. Craig, D. Mennie, N. Ostah, O.F.X. Donard and F. Martin, Analyst, 117 (1992) 823.
- 2 P.J. Craig, D. Mennie, M. Needham, N. Ostah, O.F.X. Donard and F. Martin, J. Organomet. Chem., 447 (1993) 5.
- 3 M.B. Filippelli, F. Baldi, F.E. Brinckman and G.J. Olson, *Environ. Sci. Technol.*, 26 (1992) 1457.
- 4 V.S. Petrosyan and O.A. Reutov, J. Organomet. Chem., 76 (1974), 123.
- 5 J.T. Wardell, Mercury, in E.W. Abel, F.G.A. Stone and G. Wilkinson (eds.) Comprehensive Organometallic Chemistry, Vol. 2, Pergamon Press, 1982, p. 942.
- 6 C.J. Pouchert and J. Behnke, Aldrich Library of NMR, Aldrich, 1993.